



WWW.UNIDO.ORG

0

in

# Energy Efficiency Performance Measurement and Data Due-Diligence in ISO 50001 and IPMVP: the Key to De-Risking Energy Efficiency Investments

### **Intensive Learning Session**

21 May 2018

## EE Global 2018

Copenhagen 21-22 May 2018







### Agenda - 1

| Time         | Торіс                                                                                                                     |
|--------------|---------------------------------------------------------------------------------------------------------------------------|
| 13:00-13:10  | Marco Matteini and Pierre Langlois Introduction                                                                           |
| PART 1       | Implementing energy management systems                                                                                    |
| 13:10 -13:30 | William "Liam" McLaughlin                                                                                                 |
|              | Energy performance measurement and indicators best-practices in the context of EnMS-ISO-<br>50001 implementation          |
| 13:30-13:50  | Pierre Langlois                                                                                                           |
|              | Energy performance measurement and verification: working with common references and guidance documents such as the IPMVP. |
| 13:50-14:10  | Rajvant Nijjhar                                                                                                           |
|              | Facilitating the implementation of ISO 50001 series of standards with the IPMVP framework.                                |
| 14:10-14:30  | Panel discussion + Q&A                                                                                                    |
| 14:30-15:00  | Break                                                                                                                     |







### Agenda - 2

| Time        | Торіс                                                                                                                                                                     |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PART 2      | Data due diligence and independent performance assessment                                                                                                                 |
| 15:00-15:15 | <b>Tom Dreessen</b><br>The need for independent performance verification and certification of savings estimates by qualified individual professionals.                    |
| 15:15-15:30 | Zlatko Gjurchinoski<br>Real-life examples of energy and non-energy benefits achieved by companies as result of<br>greater data-due-diligence and analysis best-practices. |
| 15:30-15:50 | Panel discussion + Q&A                                                                                                                                                    |







# Energy Performance measurement and indicators in the context of ISO 50001

#### Liam Mc Laughlin Lead International Expert in energy management systems UNIDO

Intensive Learning Session – Energy Efficiency Performance Measurement and Data Due-Diligence in ISO 50001 and IPMVP: the Key to De-Risking Energy Efficiency Investments

21 May 2018

EE Global, Copenhagen, Denmark



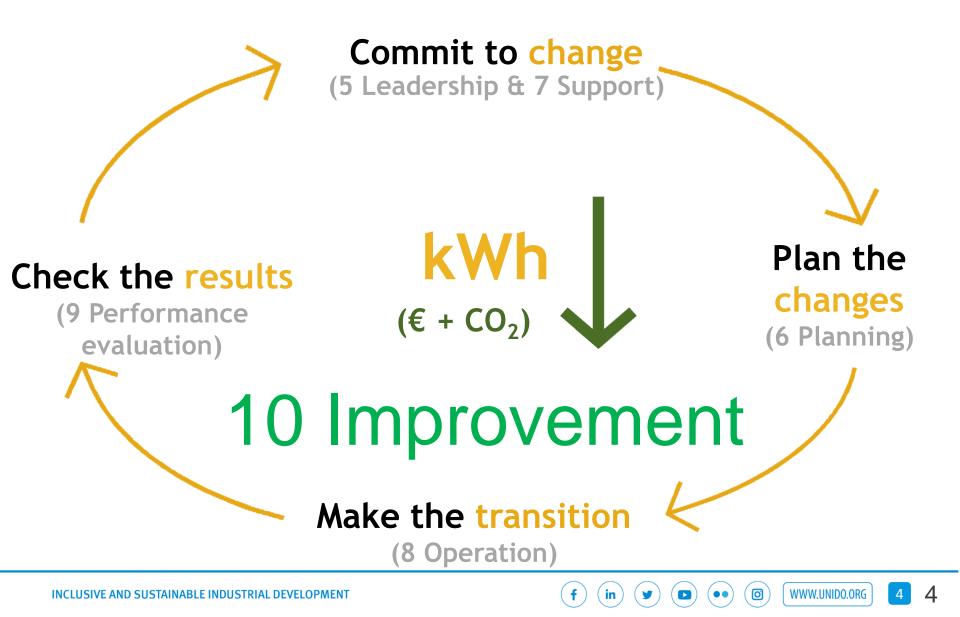




- What is ISO 50001?
- Energy performance improvement (=energy savings)
- Relationship to Benchmarking
- Relationship to measurement & verification (M&V)

"It ain't what you don't know that gets you into trouble. It's what you know for sure that just ain't so." Mark Twain





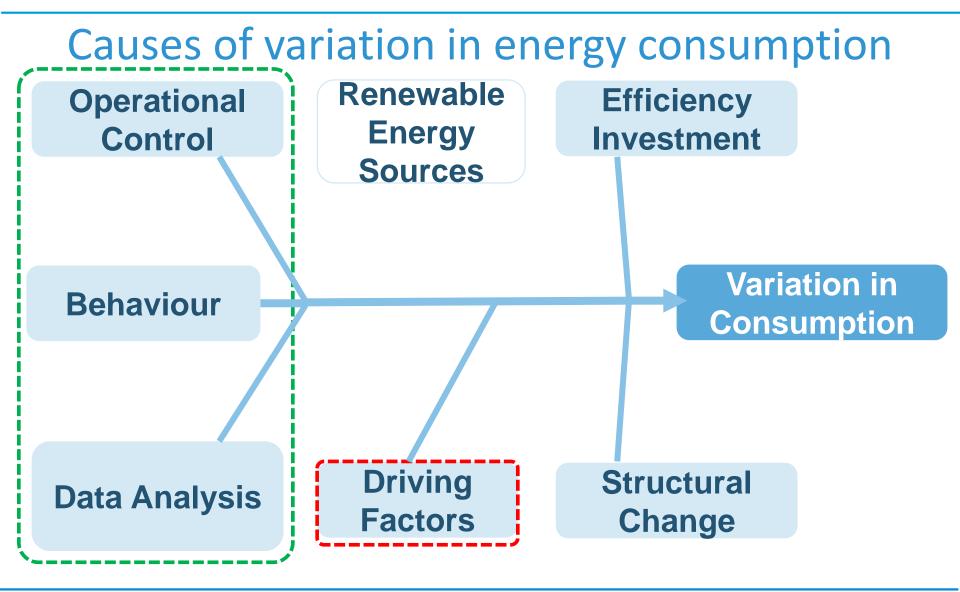





UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION










0

WWW.UNIDO.ORG

5







WWW.UNIDO.ORG

6

0

### TECHNICAL RENEWABLE EFFICIENCY

How many managers have been told by their staff that bad coal consumption was due to low output? How is it possible for them to judge whether this is an excuse or a reason?" **REDUCTION** 

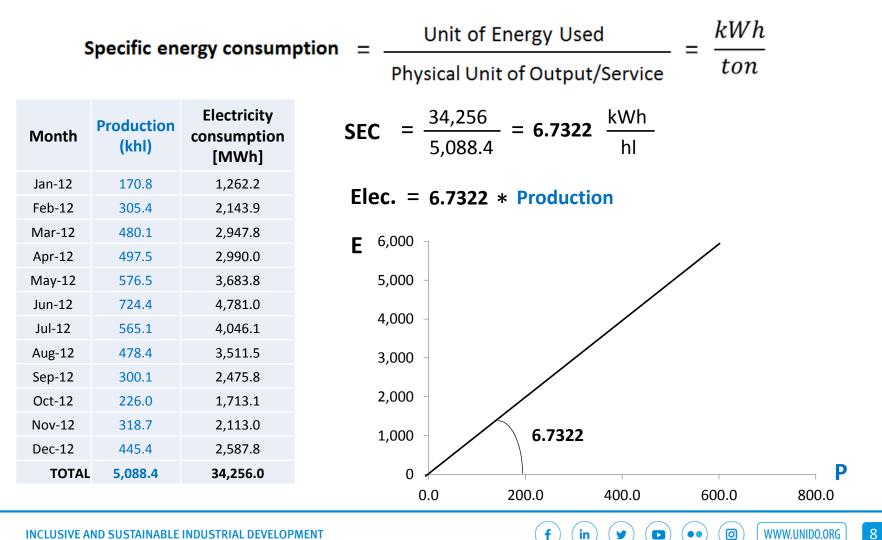






### Case Study – Brewing Industry: SEC

|        | Specific en         | ergy consum                         | Unit of Energy Used                                                    | $\underline{kWh}$ |
|--------|---------------------|-------------------------------------|------------------------------------------------------------------------|-------------------|
|        | peeme en            |                                     | Physical Unit of Output/Service                                        | - ton             |
| Month  | Production<br>(khl) | Electricity<br>consumption<br>[MWh] | SEC = $\frac{34,256}{5,088.4}$ = 6.7322 $\frac{\text{kWh}}{\text{hl}}$ |                   |
| Jan-12 | 170.8               | 1,262.2                             | Floo - C 7222 + Droduction                                             |                   |
| Feb-12 | 305.4               | 2,143.9                             | Elec. = 6.7322 * Production                                            |                   |
| Mar-12 | 480.1               | 2,947.8                             |                                                                        |                   |
| Apr-12 | 497.5               | 2,990.0                             |                                                                        |                   |
| May-12 | 576.5               | 3,683.8                             |                                                                        |                   |
| Jun-12 | 724.4               | 4,781.0                             |                                                                        |                   |
| Jul-12 | 565.1               | 4,046.1                             |                                                                        |                   |
| Aug-12 | 478.4               | 3,511.5                             |                                                                        |                   |
| Sep-12 | 300.1               | 2,475.8                             |                                                                        |                   |
| Oct-12 | 226.0               | 1,713.1                             |                                                                        |                   |
| Nov-12 | 318.7               | 2,113.0                             |                                                                        |                   |
| Dec-12 | 445.4               | 2,587.8                             |                                                                        |                   |
| TOTAL  | 5,088.4             | 34,256.0                            |                                                                        |                   |

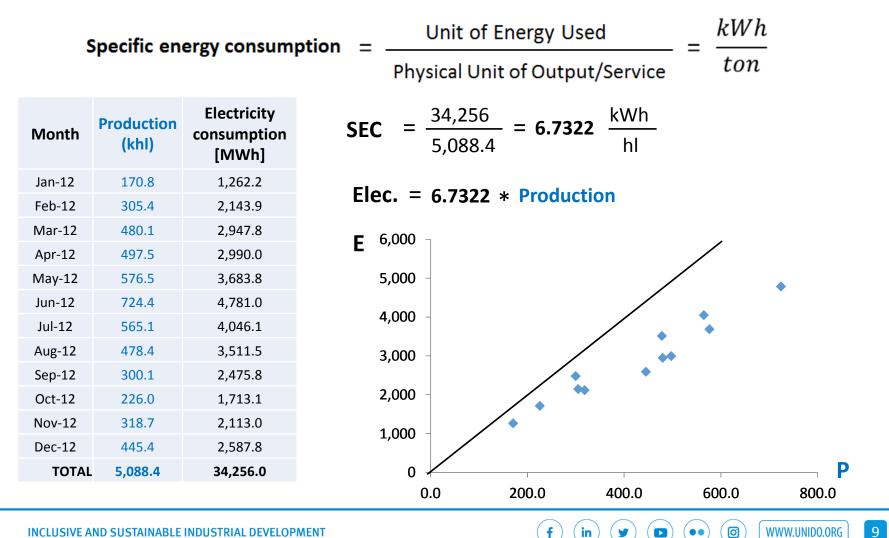







y

### Case Study – Brewing Industry: SEC line



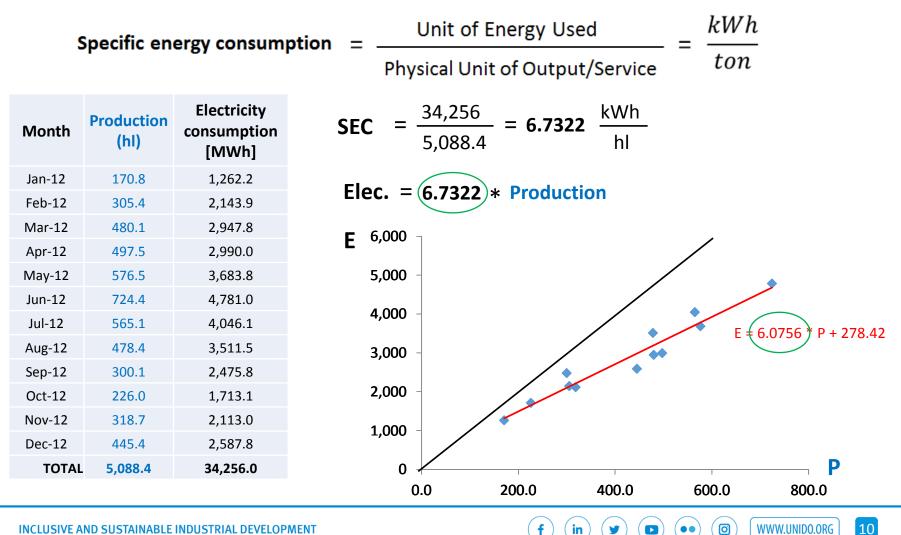





y

### Case Study – Brewing Industry: scatter

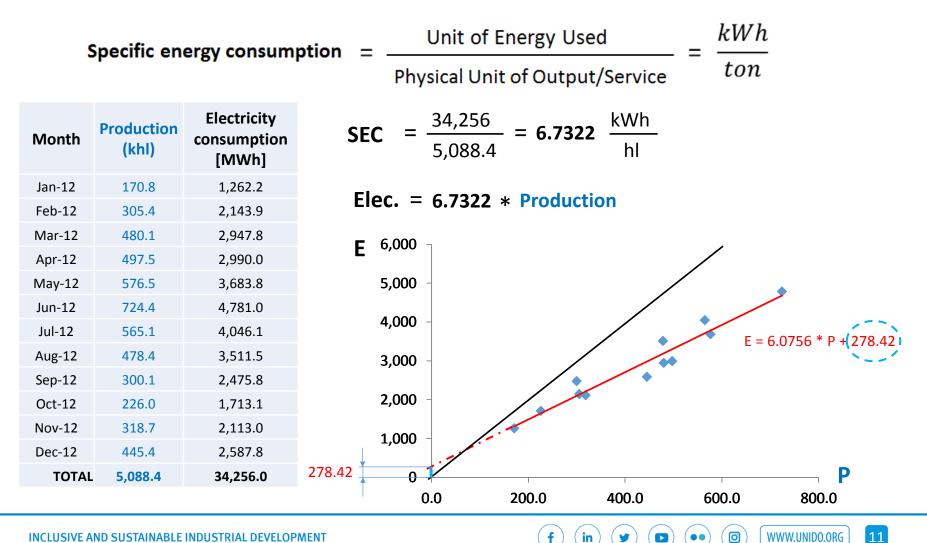



INCLUSIVE AND SUSTAINABLE INDUSTRIAL DEVELOPMENT





y

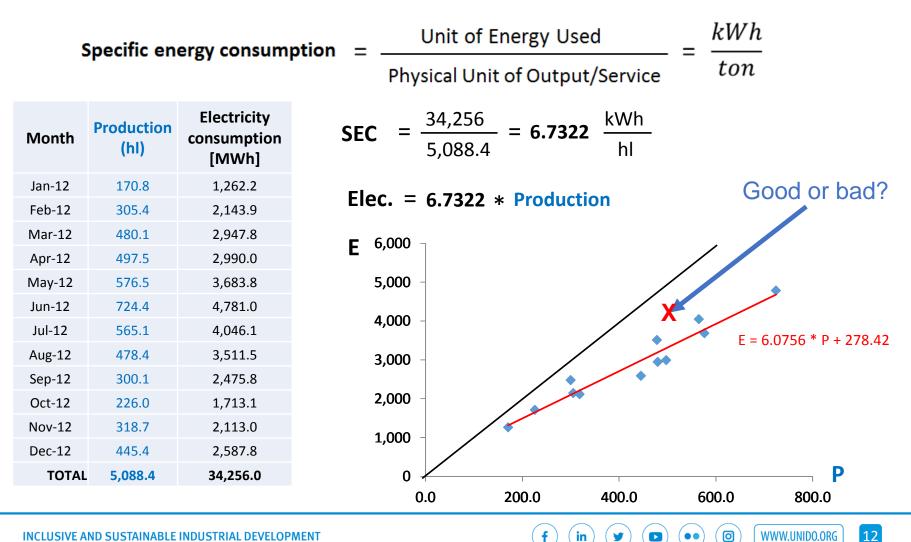

### **Case Study – Brewing Industry: baseline**







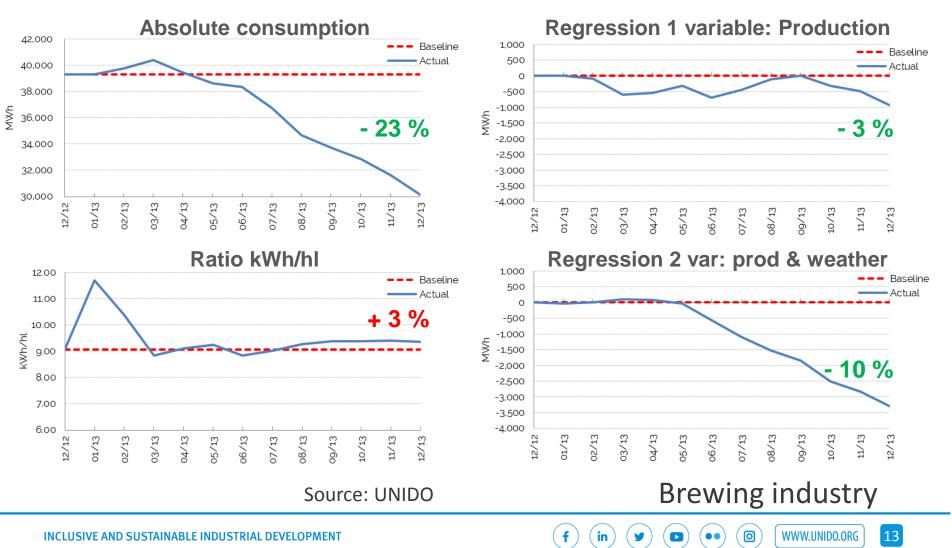
### Case Study – Brewing Industry: baseload




INCLUSIVE AND SUSTAINABLE INDUSTRIAL DEVELOPMENT






### Case Study – Brewing Industry: performance







### Energy performance in Industry – Which is right?







### Significant Energy Use Performance

| Target Savings: | 5%         |  |
|-----------------|------------|--|
| End Date:       | 20/03/2018 |  |

| SERVICE | TARGET    | ACTUAL    | SAVINGS | 5         | COST |           |           |  |  |
|---------|-----------|-----------|---------|-----------|------|-----------|-----------|--|--|
|         | last week | last week | YTD     | last week | YTD  | last week | last week |  |  |

| Chilled Water  | 3,007 kWh              | 1,971 kWh              | -48% | -€ | 3,706  | -€ | 128   | € | 4,055   | € | 211   | 12 kW     |
|----------------|------------------------|------------------------|------|----|--------|----|-------|---|---------|---|-------|-----------|
| Compressed Air | 79,557 kWh             | 82,587 kWh             | -1%  | -€ | 919    | -€ | 124   | € | 97,031  | € | 8,822 | 492 kW    |
| Cold Glycol    | 39 <b>,</b> 899 kWh    | 43,683 kWh             | 3%   | €  | 1,445  | €  | 180   | € | 48,724  | € | 4,666 | 260 kW    |
| Steam          | 42,691 Nm <sup>3</sup> | 38,367 Nm <sup>3</sup> | -8%  | -€ | 22,229 | -€ | 2,852 | € | 267,684 | € | 4,098 | 228 Nm³/h |

| Utility Electricity | -2% | -€ | 3,180  | -€ | 71    | € | 149,810 |
|---------------------|-----|----|--------|----|-------|---|---------|
| Utility Gas         | -8% | -€ | 22,229 | -€ | 2,852 | € | 267,684 |







### What does ISO 50001 require

#### ISO 50001

- Requires energy savings
- Requires demonstration of savings
- Normalised for drivers
  - Production, weather, etc.
- MAJOR non-conformity (ISO 50003)

#### **Good business**

- Requires cost savings
- CSR & Sustainability
- Should require

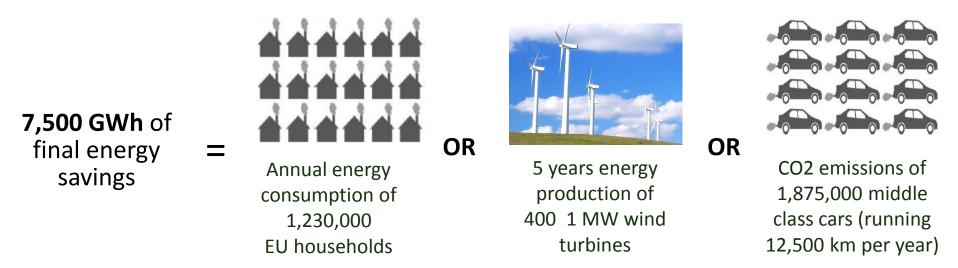
in

- demonstration of savings
- Should be objective,

quantified and normalised

0

15


WWW.UNIDO.ORG

Neither requires compromise of safety, quality, productivity, comfort





### Impact of UNIDO-GEF EnMS-ISO 50001-ESO Program



- Organization-wide energy savings in first 1-2 years range from 4% to 15%, with little or no capital investments
- Cumulative cost savings of beneficiary companies estimated to exceed USD 250 mio without considering non-energy benefits
- Direct GHG emission reductions of more than 4.8 million tCO2
- Sustainable pipeline of IEE investments generated







WWW.UNIDO.ORG

0

17



- Operational control knowledge
- Lack of leadership
- "we are already the best"



- Specific Energy Consumption (SEC) based goals
- Practical knowledge
- "we already know this"



- Practical experience
- Non-energy benefits
- "energy efficiency is expensive"





WWW.UNIDO.ORG

0

18

### **THANK YOU!**

In fields of specialized knowledge, we aim to render an account that is plain and simple, yet does no violence to the difficulty of the subject, so that the uninformed reader can understand us while the expert cannot fault us. We try to keep in mind a saying attributed to Einstein—that <u>everything</u> <u>must be made as simple as possible, but not one bit</u> <u>simpler</u>.



Efficiency Valuation Organization

Energy performance measurement and verification Working with common references and guidance documents the role of IPMVP.

#### Pierre Langlois, P. Eng, CMVP Chairman of the Board EVO

ENERGY EFFICIENCY PERFORMANCE MEASUREMENT AND DATA DUE DILIGENCE IN ISO 50001 AND IPMVP:

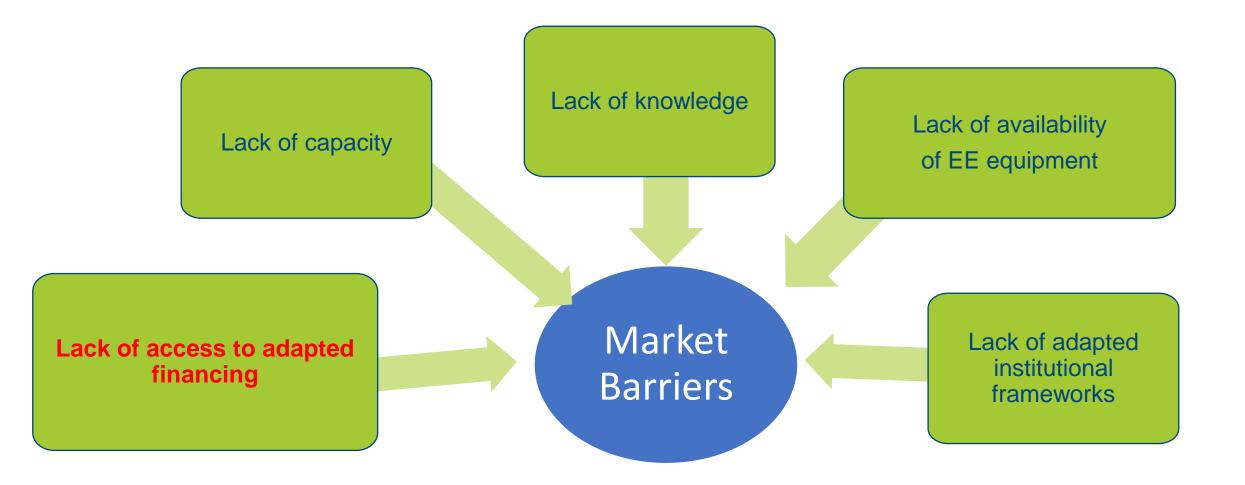
THE KEY TO DE-RISKING ENERGY EFFICIENCY INVESTMENTS

EE Global

Copenhagen, Denmark

May 21 2018

### **ENERGY EFFICIENCY**


# One of the quickest, greenest, and most cost-effective ways of addressing climate change, energy security, and ensuring economic growth. *(IPEEC, 2010)*

A central pillar of a cost-effective strategy to mitigate climate change and achieve peaking in global GHG emissions by 2020. (IEA, 2015)

Increased collaboration on EE can drive economic activity and productivity, strengthen energy security and improve environmental outcomes. (G20, 2016)



### **MARKET BARRIERS**





### **EE PROJECTS VS OTHER INVESTMENTS**

- Key Differences
  - Risk Perception
  - Quality of Collateral

# Project finance issues related to the actual cash flow generating capacity of a project



### **MEASURE SAVINGS?**

- Savings are the absence of energy use.
- We can not measure what we do not have.
- We do **not** 'measure' savings!
- We **do** measure energy use.
- We analyze measured energy use to **determine** savings.

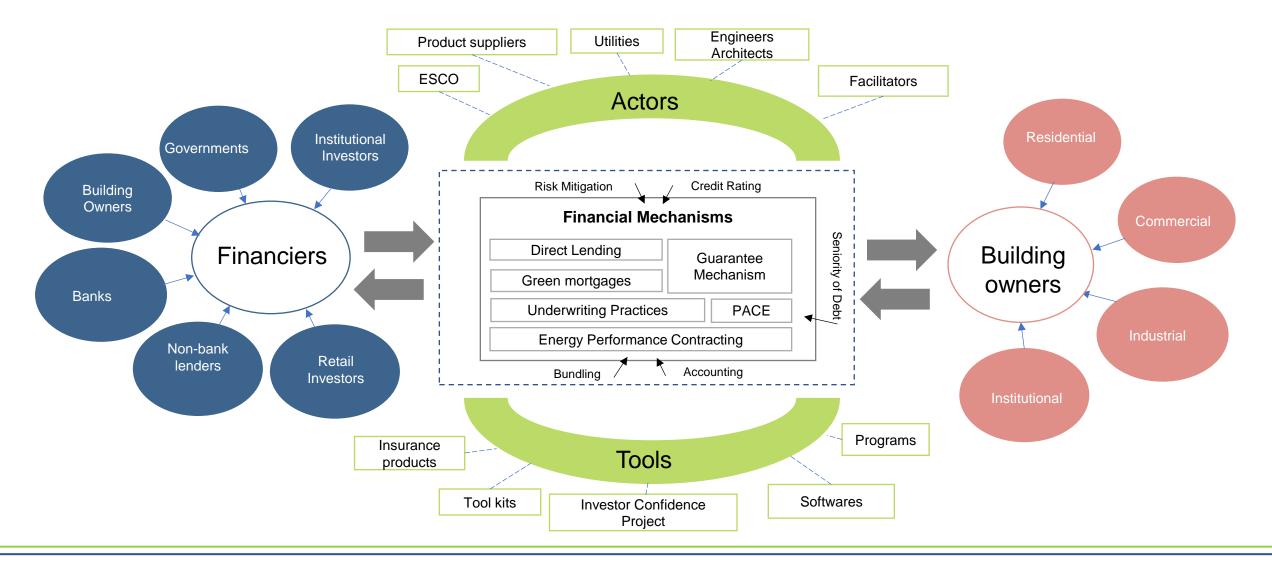


"Measurement & Verification (M&V) is the process of using measurements to reliably determine actual saving created within an individual facility by Energy Conservation Measure (ECMs)."



## **PURPOSES OF M&V**

### **Fundamental purpose**


- Demonstrate Energy Savings realized
- Guarantee sustainability of savings
- Enable financing for efficiency projects

### **Other benefits**

- Improve design, operations and maintenance
- Educate facility users about their energy impacts
- Support evaluation of efficiency programs



### THE EE COMMUNITY IN NEED OF STANDARDIZED M&V





## The EE community has to speak out of one voice

### The need is not to develop new protocols!



### **STANDARDIZATION OF THE PRACTICE OF M&V**

- Dissemination of knowledge and importance of M&V best practices and concepts through all stakeholders
- Capacity building and certification of experts
- Presence of independent verifiers



- Presents a framework and defines terms used in determining 'savings' after implementation of a project.
- Specifies the topics to be addressed in a project's M&V Plan.
- Allows flexibility in creating M&V Plans while adhering to principles: accuracy, completeness, conservativeness, consistency, relevance and transparency.



### **IPMVP**

- IPMVP is the most recognized M&V protocol worldwide.
- It is referred to by most reference documents and other protocols developed.
  - Is a reference document in the upcoming ISO standard in energy management.
- Incorporated into several frameworks in Europe and North America including the Investor Confidence Project (supported by the European Commission in Europe).



# Efficiency Valuation Organization (EVO) www.evo-world.org

- A non-profit corporation
- The home of the IPMVP
- Led by volunteers around the world



### Vision

Create a world that has confidence in EE as a reliable and sustainable energy resource.

### **Mission**

Ensure that the savings and impact of EE and sustainability projects are determined through appropriate measurement and verification.



### EVO

# Protocols

IPMVP

## **Training, Certification**

- Certification (CMVP)
- Advanced training and certification (CESV)

## **Building Community, Promoting Efficiency**

- Subscriber services through <u>www.evo-world.org</u>: newsletter, library, discounts
- Partnerships for communication, training and development
- Institutional support to develop best M&V approaches



# **EVO and IPMVP**

# can contribute to offer the needed world's EE meter



### **CONTACT INFORMATION**

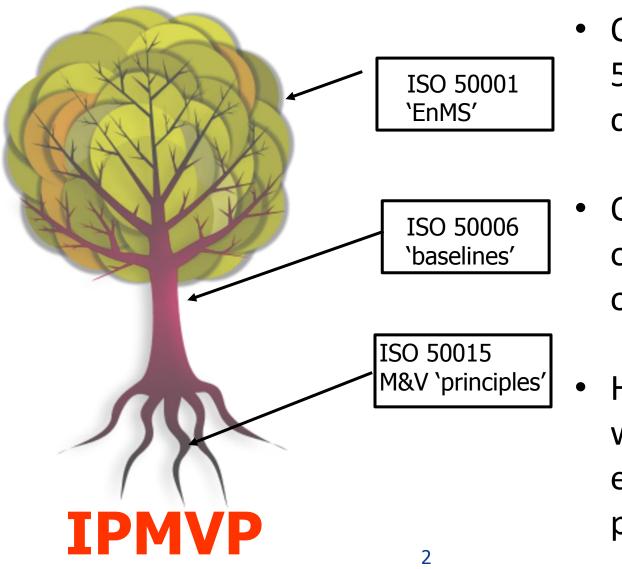
### **PIERRE LANGLOIS** Chairman of the board, EVO

Phone: 1-418-692-2592 #4202

> mail: planglois@econoler.com






## ISO 50000 SUITE OF STANDARDS & THE IPMVP:

### **HOW THEY FIT FOR BEST PRACTISE**

#### **RAJVANT NIJJHAR - DIRECTOR, iVEES®**

UK M&V EXPERT AT ISO MEETINGS, TC301 VP (FORMER PRESIDENT) UK CHAPTER OF AEE UK LEVEL 2 & 3 CMVP TRAINER CMVP INTERNATIONAL BOARD MEMBER

# Agenda:



- Overview of ISO 50001 and key changes in 2018
- Overview of other ISO suite of standards
  - How combined with IPMVP this encourages best practise

Energy Management System Standard (EnMS)

"A structured approach to the management of energy to enable energy improvement opportunities to be assessed and appropriate measures to be instigated and monitored for improvement on an on-going basis".

Ref Rajvant Nijjhar!

#### **Fundamental tenants of ISO 50001**

- Appealing to SMEs
- EnMS needs to be designed and implemented to deliver the policy to ensure energy performance improvement
- Good document management



**Key success factor of ISO 50001** 

#### Top leadership or Management support!



#### Why the update to 2011 version?

- ISO HQ Directive "Annex SL"
- All MSS must have the same High Level Structure (HLS)
- Integrated audits with other MSS'
- Commonality identified
- Earlier than usual change: 7 years of implementation since July 2011



#### FDIS March 2018 – 34 pages (compared to 2011 – 22 pages)

#### **ISO/FDIS 50001**

| 21 | Contents | Page |  |
|----|----------|------|--|
|    |          |      |  |

| 22 | Forewordv                                                                |   |  |  |
|----|--------------------------------------------------------------------------|---|--|--|
| 23 | Introductionv                                                            |   |  |  |
| 24 | 0.1 General                                                              |   |  |  |
| 25 | 1 Scope                                                                  | 2 |  |  |
| 26 | 2 Normative references                                                   | 2 |  |  |
| 27 | 3 Terms and definitions                                                  | 2 |  |  |
| 28 | 3.1 Terms related to the organization                                    | 2 |  |  |
| 29 | 3.2 Terms related to the management system                               |   |  |  |
| 30 | 3.3 Terms related to requirement                                         | 4 |  |  |
| 31 | 3.4 Terms related to performance                                         | 5 |  |  |
| 32 | 4 Context of the organization                                            | 9 |  |  |
| 33 | 4.1 Understanding the organization and its context                       | 9 |  |  |
| 34 | 4.2 Understanding the needs and expectations of interested parties       |   |  |  |
| 35 | 4.3 Determining the scope and boundaries of the energy management system |   |  |  |
| 36 | 4.4 Energy management system                                             |   |  |  |

#### Clarification on existing terminology and new terminology

 E.g. What is meant by energy performance improvement and does it include renewables?

energy use application of *energy* (3.5.1)



EXAMPLES: Ventilation; lighting; heating; cooling; transportation; data storage; production process.

#### energy performance

measurable result(s) related to energy efficiency (3.5.3), energy use (3.5.4), and energy consumption

#### NEW:

#### energy performance improvement

improvement in measurable results of energy efficiency (3.5.3), or energy consumption (3.5.2) related to energy use (3.5.4), compared to the energy baseline (3.4.7)

#### FDIS March 2018 cont.

| 37 | 5      | Leadership                                              |                |
|----|--------|---------------------------------------------------------|----------------|
| 38 | 5.1    | Leadership and commitment<br>Energy policy              |                |
| 39 | 5.2    | Energy policy                                           |                |
| 40 | 5.3    | Organization roles, responsibilities and authorities    |                |
| 41 | 6      | Planning                                                |                |
| 42 | 6.1    | Actions to address risks and opportunities              |                |
| 43 | 6.2    | Objectives, energy targets and planning to achieve then | n              |
| 44 | 6.3    | Energy review                                           |                |
| 45 | 6.4    | Energy performance indicators                           |                |
| 46 | 6.5    | Energy baseline                                         |                |
| 47 | 6.6    | Planning for collection of energy data                  | <mark>.</mark> |
| 48 | 7 Supp | oort                                                    |                |
| 49 | 7.1    | Resources                                               |                |
| 50 | 7.2    | Competence                                              |                |
| 51 | 7.3    | Awareness                                               |                |
| 52 | 7.4    | Communication                                           |                |
| 53 | 7.5    | Documented information                                  |                |
| 54 | 7.5.1  | General                                                 |                |
| 55 | 7.5.2  | Creating and updating                                   |                |
| 56 | 7.5.3  | Control of documented information                       |                |

#### Introduction of new terms and

concepts

- Energy performance indicator (EnPI) and energy baseline (EnB) clarified to provide a better understanding of these concepts.
- Normalization of EnPIs and associated EnBs





Where the organization has data indicating that relevant variables significantly affect energy performance, the organization shall carry out normalization of the EnPI value(s) and corresponding EnB(s).

NOTE 1: Depending on the nature of the activities, normalization can be a simple adjustment, or a more complex procedure.

#### FDIS March 2018 cont.

| 57 | 8 Opera       | ation                                                                               | 17 |
|----|---------------|-------------------------------------------------------------------------------------|----|
| 58 | 8.1           | Operational planning and control                                                    | 17 |
| 59 | 8.2           | Design                                                                              | 17 |
| 60 | 8.3           | Procurement                                                                         | 18 |
| 61 | 9. Perfe      | ormance evaluation                                                                  | 18 |
| 62 | 9.1           | Monitoring, measurement, analysis and evaluation of energy performance and the EnMS | 18 |
| 63 | 9.1.1 General |                                                                                     |    |
| 64 | 9.1.2         | Evaluation of compliance with legal and other requirements                          | 19 |
| 65 | 9.2           | Internal EnMS audit                                                                 | 19 |
| 66 | 9.3           | Management review                                                                   | 19 |
| 67 | 10 Imp        | rovement                                                                            | 20 |
| 68 |               | Nonconformity and corrective action                                                 |    |
| 69 | 10.2          | Continual improvement                                                               | 21 |
| 70 | Annex         | A (Informative) Guidance for Use                                                    | 22 |
| 71 | A.1           | General                                                                             |    |

# Scope of ISO 50006

- Introduction
- Scope
- Normative references
- Terms and definitions
- Measurement of energy performance
  - General overview
  - Obtaining relevant energy performance information from the energy review
  - Identifying energy performance indicators
  - Establishing energy baselines
  - Using energy performance indicators and energy baselines
  - Maintaining and adjusting energy performance indicators and energy baselines

12

Informative Annexes

BS ISO 50006:2014



Energy management systems — Measuring energy performance using energy baselines (EnB) and energy performance indicators (EnPI) — General principles and guidance

bsi.

...making excellence a habit

### Fit with ISO 50006

- Overlaps with both IPMVP and ISO 50015: baselines, setting boundaries, choosing a suitable baseline period, adjusting for changes
  - Enhances the concept of EnPIs or Energy Performance Indicators from 50001:
    - Measured energy value
    - Ratio derived such as energy efficiency
    - Model derived using statistics e.g. regression
    - Engineering based model or simulation

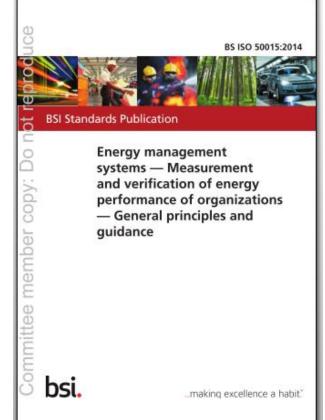
### Scope of ISO 50015 (in comparison to IPMVP)

### ISO 50015

- 1) Scope
- 2) References
- 3) Terms and Definitions
- 4) M&V Principles
- 5) Measurement and Verification Plan
- 6) Implementation of the M&V Plan
- 7) Uncertainty
- 8) M&V Documentation
- 9) Informative Annexes

#### IPMVP Core 2016\*

- 1) Scope
- 2) Normative References
- 3) Terms & Definitions
- 4) M&V Principles
- 5) IPMVP Framework
- 6) IPMVP Options
- 7) M&V Plan
- 8) M&V Reports
- 9) Adherence with IPMVP
- 10) Informative Annexes


Separate document on Statistics & Uncertainty

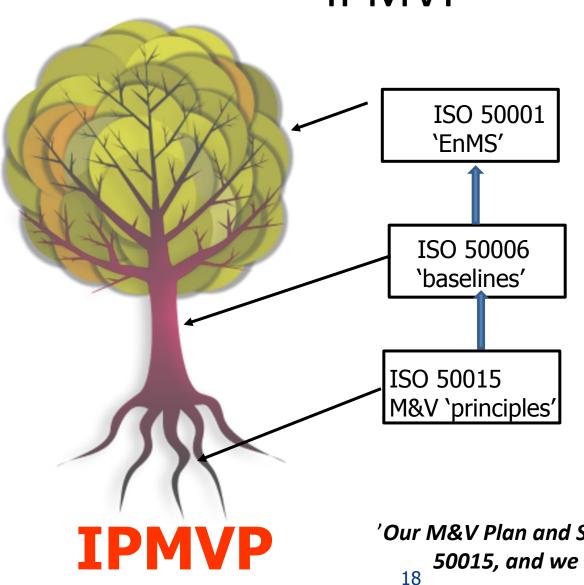
14

# Fit with ISO 50015

#### Scope of ISO 50015

- Part or all of an organization
- M&V of Energy Performance, or Energy Performance improvement
- Importantly,
  - ISO 50015 is method agnostic
  - Purpose is to increase credibility of M&V savings
  - Therefore, more statementorientated




### ISO 50015 Principles in Brief

- Appropriate accuracy and management of uncertainty
- Transparency and reproducibility of M&V process(es)
- Data management and measurement planning;
- **Competence & impartiality** of the M&V practitioner
- Confidentiality of data.
- Use of appropriate methods

### **IPMVP** Core Concepts

- Protocol that gives guidance on:
  - Principles of M&V aligned to ISO 50015
  - Gives you methods and Options
  - Advises on baselines
  - Advises on uncertainty
  - Advises on measurement and metering
  - Is fundamentally about driving energy efficiency measures and performance improvement
  - Gives M&V plan examples

### Conclusions: ISO standards supporting IPMVP



IPMVP supports the fundamentals of ISO 50001 on delivery of Energy performance improvement. 2018 strengthened but not overburdened on normalisation

50006 provides the basis of 4 different types of baselines like IPMVP Options A to D

50015 is in alignment with IPMVP; strengthened on credibility of savings.

*'Our M&V Plan and Savings Report adhere to ISO* 50015, and we used Option B of IPMVP."

### **Thanks for Listening**

Rajvant Nijjhar 07989 407 426 | rajvant@ivees.co.uk www.ivees.co.uk

> www.evo-world.org Search courses on: "IPMVP and ISO 50015"



#### De-Risking Energy Efficiency (EE) Investments with Independent Verification of Savings

#### Thomas K. Dreessen EVO Past Chairman and Current Treasurer

ENERGY EFFICIENCY PERFORMANCE MEASUREMENT AND DATA DUE DILIGENCE IN ISO 50001 AND IPMVP: THE KEY TO DE-RISKING ENERGY EFFICIENCY INVESTMENTS

EE Global

Copenhagen, Denmark

May 21 2018

## Long-Standing Energy EE Project Market Barriers

- Small, Diverse, Complex Transactions
- No 'silver bullet' solution to 'scale-ability'
- No '*Attractive*' financing (corporate vs. project)
- In many developing markets, subsidized low rates result in low returns & low penetration that create:

-Low EE Knowledge

-Limited Technical & Financing development capacity

-No Confidence in savings being realized or measured

• Barriers of Facility Owners (*Gate Keepers!!*)



### **EE Project Barriers with Facility Owners**

- Viewed as low priority *Infrastructure* vs. *Core Business* investment (*don't fix if not broken*)
- Reluctant to use current 'Corporate Financial Capacity' to fund (or borrow for) EE Projects
- Benefits too small to get on CEO 'radar screen', or justify inherent complexities and 'perceived' risks that include estimated savings not being achieved
- *Lack of Confidence in EE Technologies* working *and* in the estimated *Savings* being achieved or able to be measured and verified



## Limited Confidence in EE Savings

- Limited confidence can be caused by prior bad experience, low EE knowledge (in developing markets) and complexities in the Calculation and Measurement & Verification (M&V) of savings
- A huge M&V capacity gap exists GLOBALLY of not being able to accurately verify EE savings at all 3 major levels: Policy, Program and Project
- Solving the Global M&V Gap will increase confidence in certainty of savings being achieved and significantly *De-Risk* EE investments



### Solution to Global M&V Gap

- Solution is not more protocols or standards!
- Need a new global class of independent M&V experts to verify estimated and actual savings of EE Projects who are certified to have competencies to:
  - Estimate, evaluate and measure achieved savings of EE Projects that apply multiple types of technologies in multiple types of facilities and processes
  - Prepare and evaluate M&V Plans that follow IPMVP's generally accepted principles
- EVO has created a Global *Solution* with its new Certified Energy Savings Verifier *(CESV)* training and certification program



## **CESV Training & Certification Program**

- CESV is a new high-grade certification provided by EVO and a local certifying body to individual engineers who have demonstrated their technical competence to independently certify the estimated and achieved savings of EE Projects
- Same as Certified Public (or Chartered) Accountants who independently certify the accuracy of diverse types of financial statements, CESVs will provide an *'independent'* evaluation and certification of savings of typical diverse/complex EE Projects



### **CESV 'Certified' Capabilities**

CESVs must pass a rigorous examination (*Exam*) that demonstrates their ability to evaluate and certify the following on an EE Project:

- *Pre-Installed* estimated energy savings are materially correct;
- *Pre-Installed* M&V Plan complies with IPMVP generally accepted principals
- <u>*Post-Installed*</u> reported energy savings: i) were calculated according to the certified Pre-Installed M&V Plan and ii) materially reflect the actual savings achieved.



## **CESV Benefits**

- Solves Global M&V Gap resulting in increased confidence in certainty of savings being achieved
- **De-Risks** EE Project investments resulting in the scaling up of global EE implementation
- Becomes a Global solution for Clean Energy funds and EE Certificate programs that need a common standard or basis to verify estimated and achieved savings for their EE investments.



### EVO's CESV Development Plan

- EVO's CESV Committee, chaired by Tom Dreessen, will lead development of the CESV
- A CESV will be created in the '*developing country*' of Indonesia and in the '*developed countries*' of France, Canada and others where qualified energy auditors, certified by a reputable Local Certifying Board (*LCB*) exist
- EVO will create/provide a '*Global*' CESV Exam and Training Program to be localized by each local training partner and the LCB



# **CESV – Indonesia Development Plan**

- EVO will develop the CESV in Indonesia with MASKEEI as one of the 5 modules in its Energy Efficiency Training and Certification (EETC) program to be provided in Indonesia in partnership with EPS Capital Corp.
- MASKEEI is an Indonesian non-profit organization comprised of individual and organizational members whose common vision and mission focuses on achieving national energy security and resilience for sustainable growth in Indonesia through the implementation and practice of energy conservation.



## **CESV Program in Indonesia**

- 1. <u>Trainees</u>: Individuals already holding a Certified Investment Grade Auditor (CIGA) certificate
- Benefiting Stakeholders: Facility Owners, ESCOs, Consultants, Government staff, banks and other EE Service Providers
- 3. <u>Length</u>: 4 Days with a **CESV Certification Exam on Day 4** requiring preparation of a M&V Plan and Evaluation of Saving estimate in a *'Case Study'* Investment Grad Audit
- 4. Certification Criteria: CESV Exam Score of 70 or higher



**Thomas K. Dreessen** EVO Past Chairman

Phone: +62 8787 7658 5005
Email: tkd@epscc.com









#### Real-life examples of energy and non-energy benefits achieved by companies as result of greater data-due-diligence and analysis best-practices

Zlatko Gjurchinoski UNIDO qualified Expert in Energy Management System Implementation

Intensive Learning Session – Energy Efficiency Performance Measurement and Data Due-Diligence in ISO 50001 and IPMVP: the Key to De-Risking Energy Efficiency Investments

21 May 2018

EE Global, Copenhagen, Denmark







#### **Company Overview**

- Company name: Vardar Dolomit dooel
- Location: Gostivar Republic of Macedonia
- Core Business: Refractories Production
- Annual Production: 44 000 tons
- Annual Heavy Fuel Oil Consumption
   ✓ 2 950 000 kg
- Annual Light Fuel Oil Consumption
  - ✓ 700 000 lt
- Annual Electricity Consumption
  - ✓ 3 840 MWh









#### **Company Overview**

- Company name: Vardar Dolomit dooel
- Location: Gostivar Republic of Macedonia
- Core Business: Refractories Production
- Annual Production: 44 000 tons
- Annual Heavy Fuel Oil Consumption
   Annual Heavy Fuel Oil Consumption
  - ✓ 2 950 000 kg = 33 646 MWh
- Annual Light Fuel Oil Consumption
   ✓ 700 000 lt = 7 027 MWh
- Annual Electricity Consumption
   ✓ 3 840 MWh
- Annual Total Energy Consumption
   ✓ 44 513 MWh









# Chronological Order Of EnMS Implementation – year 2015

- Start with implementation second half of the year
- Energy Policy
- Building energy awareness
- Defining roles and responsibilities
- Stuff cost = 300 labor hour
- Investment cost 0 EUR







- Achieved energy savings 50 000 kWh of electricity (1,5% from previous year consumption)
- Achieved 30% electricity price reduction due to better energy supply contract 70 000 EUR annual savings
- Non Energy Benefits

**Chronological Order Of EnMS** Implementation – year 2016

Implementation was successfully finished











UNITED NATIONS







Chronological Order Of EnMS Implementation – year 2017

- EnMS successfully certified
- Total Energy Performance improvement 3%
- Total Energy Savings 3 527 GJ
- Total Energy Cost Savings 57 530 EUR
- Total cost (investm. + labor) 15 520 EUR payback
   0.27 years
- Non Energy Benefits







y

0

WWW.UNIDO.ORG

#### Chronological Order Of EnMS Implementation – year 2018

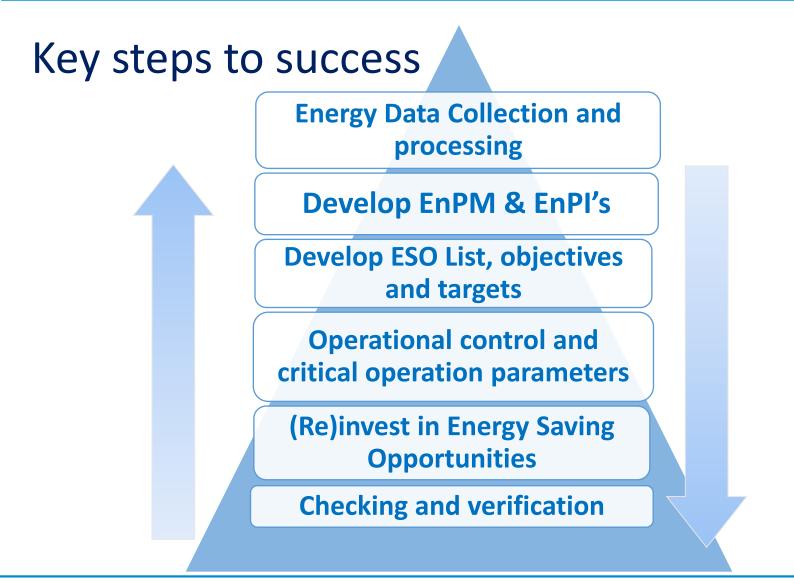






# Non Energy Benefits – "Cherry at the top of the dessert"

- Developed Energy Performance Metrics and Energy performance indicators (EnPI's)
- Better understanding of Energy Forecasting
- Increased overall productivity and competitiveness
- Avoided fire risk at Oven as result of regular monitoring of Energy Performance Indicators
  - It is difficult to accurately determine how much the damage caused by a fire would be, but it would certainly be greater than the amount of all the savings and investments so far.








WWW.UNIDO.ORG

0







y

WWW.UNIDO.ORG

0

10

#### **Energy Performance Data Collection**







# Energy Performance Data Collection

- Necessary Energy Data end their collection
  - Fuel data prior to EnMS implementation
    - 2 heavy fuel oil meters with manual data collection
    - Monthly light fuel oil bill
  - Fuel data after EnMS implementation
    - 4 light fuel oil with manual data collection were installed
    - 2 new heavy fuel oil meters were installed (with possibility for automatic data collection)
  - Electricity data collection
    - Prior to EnMS Software for automatic data collection of electricity consumption with 16 measuring points

in

 After EnMS – this year integration of heavy fuel oil meters in existing software for electricity data collection is planned and next wear integration of light fuel oil meters



WWW.UNIDO.ORG

0

11





WWW.UNIDO.ORG

0

12

#### **Energy Performance Data Collection**

- Necessary additional Relevant Variable Data and their collection
  - Production quantity for every product
    - They were collected before EnMS implementation
  - Heating Degree Days and Cooling Degrees Days
    - Available online www.degreedays.net
  - Advantages/Disadvantages of Manual data collection
    - Cheap and simple
    - Someone must read them on exact time (even on public holidays)
  - Advantages/Disadvantages of Automatic data collection
    - More expensive at the beginning
    - More accurate and reading intervals can be changed retroactive
  - Be aware that even most sophisticated data collection software need someone to analyze that data and to make decisions
    - In Vardar Dolomit every week 4-8 hours are spend for Data Due Diligence







WWW.UNIDO.ORG

0

13

### **Energy Performance Measurement and EnPl's**

- Steps for Energy Performance measurement with regression analysis
  - Collect energy data from Baseline period (e.g. previous year)
  - ✓ Collect all relevant variables that affect energy consumption
    - Level of production of product/products
    - HDD/CDD
    - Night length etc.
  - Made REGRESSION ANALYSIS with all this data
  - Calculate BASELINE with equation from regression analysis
  - Compare Consumed with Calculated Baseline Energy = SAVINGS
  - CUSUM Cumulative SUM savings





WWW.UNIDO.ORG

0

y

in

#### **Energy Performance Measurement and EnPl's**

| Regression Statistics |          |  |  |  |  |  |  |
|-----------------------|----------|--|--|--|--|--|--|
| Multiple R            | 0.98588  |  |  |  |  |  |  |
| R Square              | 0.97196  |  |  |  |  |  |  |
| Adjusted R            |          |  |  |  |  |  |  |
| Square                | 0.970515 |  |  |  |  |  |  |
| Standard Error        | 3079.403 |  |  |  |  |  |  |
| Observations          | 103      |  |  |  |  |  |  |

ANOVA

#### • Example of Regression Analysis in Microsoft EXCEL

|            |     |          |          |          | Significanc |
|------------|-----|----------|----------|----------|-------------|
|            | df  | SS       | MS       | F        | e F         |
| Regression | 5   | 3.19E+10 | 6.38E+09 | 672.4724 | 1.32E-73    |
| Residual   | 97  | 9.2E+08  | 9482720  |          |             |
| Total      | 102 | 3.28E+10 |          |          |             |

| Coefficient Standard |          |          |          | Lower    | Upper    | Lower    | Upper    |          |
|----------------------|----------|----------|----------|----------|----------|----------|----------|----------|
|                      | 5        | Error    | t Stat   | P-value  | 95%      | 95%      | 95.0%    | 95.0%    |
| Intercept            | 17686.05 | 2860.332 | 6.183217 | 1.49E-08 | 12009.08 | 23363.02 | 12009.08 | 23363.02 |
| Product No1          | 0.039997 | 0.007463 | 5.359619 | 5.63E-07 | 0.025185 | 0.054808 | 0.025185 | 0.054808 |
| Prod.No2&3           | 0.041872 | 0.003747 | 11.17469 | 3.99E-19 | 0.034435 | 0.049309 | 0.034435 | 0.049309 |
| HDD 15,5             | 124.9639 | 13.9359  | 8.96705  | 2.28E-14 | 97.30501 | 152.6228 | 97.30501 | 152.6228 |
| Night Length         | 409.6934 | 278.0966 | 1.473205 | 0.143933 | -142.251 | 961.6381 | -142.251 | 961.6381 |
| Sh.Kiln w.days       | 2684.9   | 542.9266 | 4.945237 | 3.19E-06 | 1607.341 | 3762.459 | 1607.341 | 3762.459 |







y

WWW.UNIDO.ORG

0

#### **Energy Performance Measurement and EnPl's**

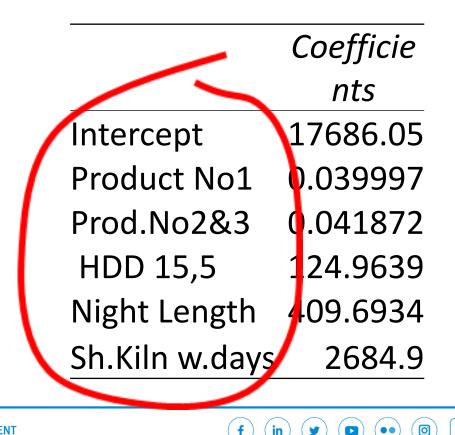
| Regression Statistics |          |  |  |  |  |  |  |
|-----------------------|----------|--|--|--|--|--|--|
| Multiple R            | 0.98588  |  |  |  |  |  |  |
| R Square              | 0.97196  |  |  |  |  |  |  |
| Adjusted R            |          |  |  |  |  |  |  |
| Square                | 0.970515 |  |  |  |  |  |  |
| Standard Error        | 3079.403 |  |  |  |  |  |  |
| Observations          | 103      |  |  |  |  |  |  |

ANOVA

#### • Example of Regression Analysis in Microsoft EXCEL

|            |     |          |          |          | Significanc |
|------------|-----|----------|----------|----------|-------------|
|            | df  | SS       | MS       | F        | e F         |
| Regression | 5   | 3.19E+10 | 6.38E+09 | 672.4724 | 1.32E-73    |
| Residual   | 97  | 9.2E+08  | 9482720  |          |             |
| Total      | 102 | 3.28E+10 |          |          |             |

|   | Coefficient Standard |          |          |          |          | Lower    | Upper    | Lower    | Upper    |
|---|----------------------|----------|----------|----------|----------|----------|----------|----------|----------|
|   |                      | 5        | Error    | t Stat   | P-value  | 95%      | 95%      | 95.0%    | 95.0%    |
| / | Intercept            | 17686.05 | 2860.332 | 6.183217 | 1.49E-08 | 12009.08 | 23363.02 | 12009.08 | 23363.02 |
| / | Product No1          | 0.039997 | 0.007463 | 5.359619 | 5.63E-07 | 0.025185 | 0.054808 | 0.025185 | 0.054808 |
|   | Prod.No2&3           | 0.041872 | 0.003747 | 11.17469 | 3.99E-19 | 0.034435 | 0.049309 | 0.034435 | 0.049309 |
|   | HDD 15,5             | 124.9639 | 13.9359  | 8.96705  | 2.28E-14 | 97.30501 | 152.6228 | 97.30501 | 152.6228 |
|   | Night Length         | 409.6934 | 278.0966 | 1.473205 | 0.143933 | -142.251 | 961.6381 | -142.251 | 961.6381 |
|   | Sh.Kiln w.days       | 2684.9   | 542.9266 | 4.945237 | 3.19E-06 | 1607.341 | 3762.459 | 1607.341 | 3762.459 |






WWW.UNIDO.ORG

#### **Energy Performance Measurement and EnPl's**

 Example of Regression Analysis in Microsoft EXCEL



in





WWW.UNIDO.ORG

0

y

in

#### **Energy Performance Measurement and EnPl's**

| Regression Statistics |          |  |  |  |  |  |  |
|-----------------------|----------|--|--|--|--|--|--|
| Multiple R            | 0.98588  |  |  |  |  |  |  |
| R Square              | 0.97196  |  |  |  |  |  |  |
| Adjusted R            |          |  |  |  |  |  |  |
| Square                | 0.970515 |  |  |  |  |  |  |
| Standard Error        | 3079.403 |  |  |  |  |  |  |
| Observations          | 103      |  |  |  |  |  |  |

ANOVA

#### • Example of Regression Analysis in Microsoft EXCEL

|            |     |          |          |          | Significanc |
|------------|-----|----------|----------|----------|-------------|
|            | df  | SS       | MS       | F        | e F         |
| Regression | 5   | 3.19E+10 | 6.38E+09 | 672.4724 | 1.32E-73    |
| Residual   | 97  | 9.2E+08  | 9482720  |          |             |
| Total      | 102 | 3.28E+10 |          |          |             |

| Coefficient Standard |          |          |          | Lower    | Upper    | Lower    | Upper    |          |
|----------------------|----------|----------|----------|----------|----------|----------|----------|----------|
|                      | 5        | Error    | t Stat   | P-value  | 95%      | 95%      | 95.0%    | 95.0%    |
| Intercept            | 17686.05 | 2860.332 | 6.183217 | 1.49E-08 | 12009.08 | 23363.02 | 12009.08 | 23363.02 |
| Product No1          | 0.039997 | 0.007463 | 5.359619 | 5.63E-07 | 0.025185 | 0.054808 | 0.025185 | 0.054808 |
| Prod.No2&3           | 0.041872 | 0.003747 | 11.17469 | 3.99E-19 | 0.034435 | 0.049309 | 0.034435 | 0.049309 |
| HDD 15,5             | 124.9639 | 13.9359  | 8.96705  | 2.28E-14 | 97.30501 | 152.6228 | 97.30501 | 152.6228 |
| Night Length         | 409.6934 | 278.0966 | 1.473205 | 0.143933 | -142.251 | 961.6381 | -142.251 | 961.6381 |
| Sh.Kiln w.days       | 2684.9   | 542.9266 | 4.945237 | 3.19E-06 | 1607.341 | 3762.459 | 1607.341 | 3762.459 |







y

୕୲୕

WWW.UNIDO.ORG

#### **Energy Performance Measurement and EnPl's**

| Regression Statistics |          |   |  |  |  |  |  |
|-----------------------|----------|---|--|--|--|--|--|
| Multiple R            | 0.98588  | ١ |  |  |  |  |  |
| R Square              | 0.97196  |   |  |  |  |  |  |
| Adjusted R            |          |   |  |  |  |  |  |
| Square                | 0.970515 |   |  |  |  |  |  |
| Standard Error        | 3079.403 | J |  |  |  |  |  |
| Observations          | 103      |   |  |  |  |  |  |
|                       |          |   |  |  |  |  |  |
| ANOVA                 |          |   |  |  |  |  |  |

#### • Example of Regression Analysis in Microsoft EXCEL

|            |     |          |          | 9        | Significanc |
|------------|-----|----------|----------|----------|-------------|
|            | df  | SS       | MS       | F        | e F         |
| Regression | 5   | 3.19E+10 | 6.38E+09 | 672.4724 | 1.32E-73    |
| Residual   | 97  | 9.2E+08  | 9482720  |          |             |
| Total      | 102 | 3.28E+10 |          |          |             |

| Coefficient Standard |          |          |          | Lower    | Upper    | Lower    | Upper    |          |
|----------------------|----------|----------|----------|----------|----------|----------|----------|----------|
|                      | 5        | Error    | t Stat   | P-value  | 95%      | 95%      | 95.0%    | 95.0%    |
| Intercept            | 17686.05 | 2860.332 | 6.183217 | 1.49E-08 | 12009.08 | 23363.02 | 12009.08 | 23363.02 |
| Product No1          | 0.039997 | 0.007463 | 5.359619 | 5.63E-07 | 0.025185 | 0.054808 | 0.025185 | 0.054808 |
| Prod.No2&3           | 0.041872 | 0.003747 | 11.17469 | 3.99E-19 | 0.034435 | 0.049309 | 0.034435 | 0.049309 |
| HDD 15,5             | 124.9639 | 13.9359  | 8.96705  | 2.28E-14 | 97.30501 | 152.6228 | 97.30501 | 152.6228 |
| Night Length         | 409.6934 | 278.0966 | 1.473205 | 0.143933 | -142.251 | 961.6381 | -142.251 | 961.6381 |
| Sh.Kiln w.days       | 2684.9   | 542.9266 | 4.945237 | 3.19E-06 | 1607.341 | 3762.459 | 1607.341 | 3762.459 |





y

WWW.UNIDO.ORG

0

#### **Energy Performance Measurement and EnPl's**

|                | • Ex        | xample of Regression       |
|----------------|-------------|----------------------------|
| Regression S   | tatistics A | nalysis in Microsoft EXCEL |
| Multiple R     | 0.98588     |                            |
| R Square       | 0.97196     |                            |
| Adjusted R     |             |                            |
| Square         | 0.970515    |                            |
| Standard Error | 3079.403    |                            |
| Observations   | 103         |                            |
|                |             |                            |





0

y

in

WWW.UNIDO.ORG

#### **Energy Performance Measurement and EnPl's**

| Electricity | Electricity | EnPC       | Achieved  | Achieved  | Target   | Target   | Target    |       |  |
|-------------|-------------|------------|-----------|-----------|----------|----------|-----------|-------|--|
| consumed    | expected    | consumed.  | savings   | Savings   | Consum-  | Savings  | Savings   | 3.00% |  |
| kWh         | kWh         | / expected | (Con-Exp) | CUSUM     | ption    | (TarExp) | CUSUM     |       |  |
| 83087.144   | 90251.46    | 0.92061823 | -7,164.3  | -7,164.3  | 87,543.9 | -2,707.5 | -2,707.5  | 1     |  |
| 94849.246   | 94111.2     | 1.00784225 | 738.0     | -6,426.3  | 91,287.9 | -2,823.3 | -5,530.9  | 9 -1  |  |
| 93005.285   | 93276.03    | 0.99709737 | -270.7    | -6,697.0  | 90,477.7 | -2,798.3 | -8,329.2  | 0     |  |
| 99094.989   | 99491.68    | 0.99601287 | -396.7    | -7,093.7  | 96,506.9 | -2,984.8 | -11,313.9 | 0     |  |
| 88398.772   | 89738.96    | 0.98506575 | -1,340.2  | -8,433.9  | 87,046.8 | -2,692.2 | -14,006.1 | 0     |  |
| 90766.106   | 90680.08    | 1.00094866 | 86.0      | -8,347.9  | 87,959.7 | -2,720.4 | -16,726.5 | 9 -1  |  |
| 93524.308   | 92903.56    | 1.00668167 | 620.8     | -7,727.1  | 90,116.4 | -2,787.1 | -19,513.6 | 9 -1  |  |
| 91780.035   | 90467.3     | 1.01451064 | 1,312.7   | -6,414.4  | 87,753.3 | -2,714.0 | -22,227.6 | 9 -1  |  |
| 94873.282   | 96781.26    | 0.98028562 | -1,908.0  | -8,322.4  | 93,877.8 | -2,903.4 | -25,131.0 | 0     |  |
| 70657.861   | 69941.71    | 1.01023929 | 716.2     | -7,606.2  | 67,843.5 | -2,098.3 | -27,229.3 | 9 -1  |  |
| 80669.042   | 84227.58    | 0.95775096 | -3,558.5  | -11,164.7 | 81,700.7 | -2,526.8 | -29,756.1 | 1     |  |
| 87744.101   | 90152.34    | 0.97328705 | -2,408.2  | -13,573.0 | 87,447.8 | -2,704.6 | -32,460.7 | 0     |  |
| 86639.673   | 82942.23    | 1.04457854 | 3,697.4   | -9,875.5  | 80,454.0 | -2,488.3 | -34,949.0 | 9 -1  |  |
| 80498.537   | 84647.6     | 0.95098428 | -4,149.1  | -14,024.6 | 82,108.2 | -2,539.4 | -37,488.4 | 1     |  |
| 80498.537   | 81505.64    | 0.98764374 | -1,007.1  | -15,031.7 | 79,060.5 | -2,445.2 | -39,933.6 | 0     |  |
| 81250.196   | 85340.23    | 0.95207382 | -4,090.0  | -19,121.7 | 82,780.0 | -2,560.2 | -42,493.8 | 1     |  |
| 79273.601   | 83259.1     | 0.9521314  | -3,985.5  | -23,107.2 | 80,761.3 | -2,497.8 | -44,991.5 | 1     |  |

INCLUSIVE AND SUSTAINABLE INDUSTRIAL DEVELOPMENT





WWW.UNIDO.ORG

#### Energy Performance Measurement and EnPl's

| Electricity | Electricity | EnPC       | Achieved            | Achieved  | Tar  | get   | Target  | 1   | Target    |            |       |  |
|-------------|-------------|------------|---------------------|-----------|------|-------|---------|-----|-----------|------------|-------|--|
| consumed    | expected    | consumed.  | savings             | Savings   | Cons | sum-  | Savings |     | Savings   | 3          | 3.00% |  |
| kWh         | kWh         | / expected | (Con-Exp)           | CUSUM     | pti  | on    | (TarExp |     | CUSUM     |            |       |  |
| 83087.144   | 90251.46    | 0.92061823 | -7,164.3            | -7,164.3  | 87,  | 543.9 | -2,70   | 7.5 | -2,707.5  |            | 1     |  |
| 94849.246   | 94111.2     | 1.00784225 | 738.0               | -6,426.3  | 91,  | 287.9 | -2,82   | 3.3 | -5,530.9  |            | -1    |  |
| 93005.285   | 93276.03    | 0.99709737 | -270.7              | -6,697.0  | 90,  | 477.7 | -2,79   | 3.3 | -8,329.2  |            | 0     |  |
| 99094.989   | 99491.68    | 0.99601287 | -396.7              | -7,093.7  | 96,  | 506.9 | -2,98   | 4.8 | -11,313.9 | Þ          | 0     |  |
| 88398.772   | 89738.96    | 0.98506575 | -1,340.2            | -8,433.9  | 87,  | 046.8 | -2,69   | 2.2 | -14,006.1 |            | 0     |  |
| 90766.106   | 90680.08    | 1.00094866 | 86.0                | -8,347.9  | 87,  | 959.7 | -2,72   | ).4 | -16,726.5 |            | -1    |  |
| 93524.308   | 92903.56    | 1.00668167 | 620.8               | -7,727.1  | 90,  | 116.4 | -2,78   | 7.1 | -19,513.6 |            | -1    |  |
| 91780.035   | 90467.3     | 1.01451064 | 1,312.7             | -6,414.4  | 87,  | 753.3 | -2,71   | 4.0 | -22,227.6 |            | -1    |  |
| 94873.282   | 96781.26    | 0.98028562 | -1,908.0            | -8,322.4  | 93,  | 877.8 | -2,90   | 3.4 | -25,131.0 |            | 0     |  |
| 70657.861   | 69941.71    | 1.01023929 | 716. <mark>2</mark> | -7,606.2  | 67,  | 843.5 | -2,09   | 3.3 | -27,229.3 |            | -1    |  |
| 80669.042   | 84227.58    | 0.95775096 | -3,558.5            | -11,164.7 | 81,  | 700.7 | -2,52   | 5.8 | -29,756.1 |            | 1     |  |
| 87744.101   | 90152.34    | 0.97328705 | -2,408.2            | -13,573.0 | 87,  | 447.8 | -2,70   | 4.6 | -32,460.7 |            | 0     |  |
| 86639.673   | 82942.23    | 1.04457854 | 3,697.4             | -9,875.5  | 80,  | 454.0 | -2,48   | 3.3 | -34,949.0 |            | -1    |  |
| 80498.537   | 84647.6     | 0.95098428 | -4,149.1            | -14,024.6 | 82,  | 108.2 | -2,53   | 9.4 | -37,488.4 |            | 1     |  |
| 80498.537   | 81505.64    | 0.98764374 | -1,007.1            | -15,031.7 | 79,  | 060.5 | -2,445  | 5.2 | -39,933.6 | $\bigcirc$ | 0     |  |
| 81250.196   | 85340.23    | 0.95207382 | -4,090.0            | -19,121.7 | 82,  | 780.0 | -2,560  | 2   | -42,493.8 |            | 1     |  |
| 79273.601   | 83259.1     | 0.9521314  | -3,985.5            | -23,107.2 | 80,  | 761.3 | -2,497  | 7.8 | -44,991.5 |            | 1     |  |
|             |             |            |                     |           |      |       |         |     | <b>`</b>  |            |       |  |

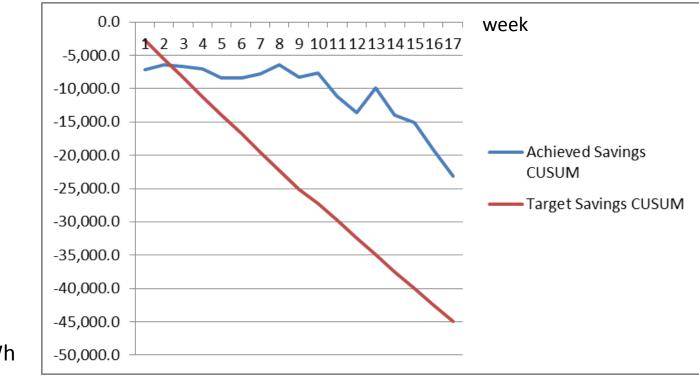
f

in

y

INCLUSIVE AND SUSTAINABLE INDUSTRIAL DEVELOPMENT






y

WWW.UNIDO.ORG

0

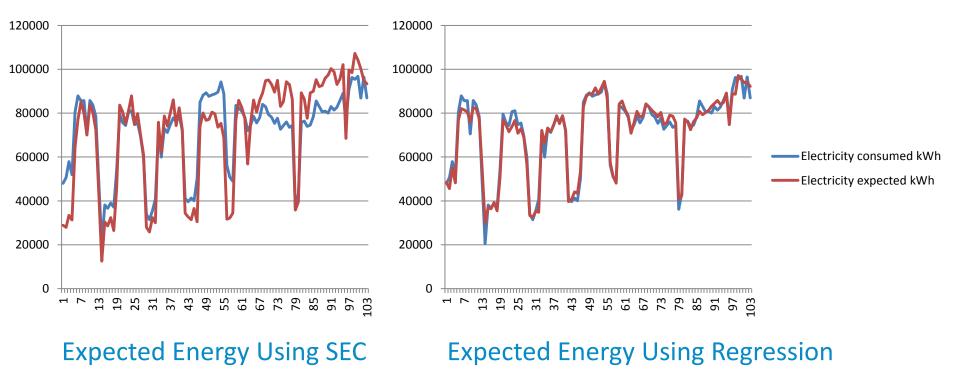
#### **Energy Performance Measurement and EnPl's**



Electricity kWh





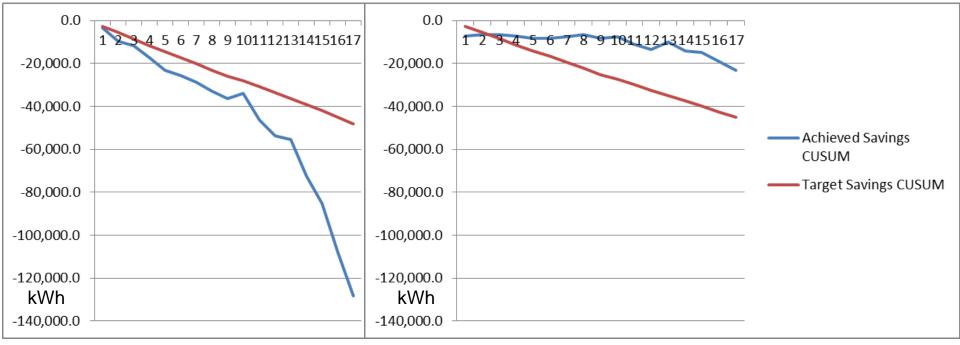



WWW.UNIDO.ORG

23

#### **Energy Performance Measurement and EnPl's**

• Why to spend so much time on data analysis when SEC is much easier?








#### **Energy Performance Measurement and EnPl's**

• Why to spend so much time on data analysis when SEC is much easier?



**CUSUM Using SEC** 

**CUSUM Using Regression Analysis** 







# ESO List, Objectives and Targets

- All energy saving opportunities should be put in one place
  - ✓ Give priority to no/lo cost opportunities
  - ✓ Consider implementation duration and complexity
- Chose which and how many opportunities to implement regarding of Objectives, Targets and Resources
- Focus od System efficiency instead of each component efficiency











### **Operational Control**

#### • What is operational control

- ✓ Checking insulation
- ✓ Regular bearings greasing
- ✓ Regular cleaning/changing filters
- Combustion optimization
- ✓ Checking conveyor belts …



- With one word Regular Maintenance considering energy efficiency
- Operational control is, not modern, boring day to day work that brings energy savings without any investments!







#### **Critical Operational Parameters**

- What if we decrease room temperature for 1 degree???
  - ✓ Probably our body will not feel difference
  - ✓ But our energy meter will
- Usually operation parameters are set to some value and nobody knows why
  - ✓ Ask who set that value?
  - ✓ Who knows why that value
  - ✓ Can we changed it in order to save energy?
  - ✓ What will be if we try?
- Finding answers to this questions is also big possibility for no cost energy savings!



WWW.UNIDO.ORG







### **Investments in Energy Efficiency**

- There are lot of useful energy saving opportunities that need investment
- Prior to invest in Energy Efficiency be sure to check
  - ✓ That all no/lost opportunities for that area are already used
  - ✓ Understand the process well
  - ✓ Calculate or estimate real needs for product from that investment
- Trust to your suppliers but never underestimate the cunning of experienced salespersons
  - ✓ They can bigger or more expensive equipment that you actually need
  - ✓ Take care of life cycle costs
- Calculate expected savings before investment and measure and verify them after!
- Investment Risk is always lower if you invest money already saved with no cost measures!







# Special thanks to

Vardar Dolomit Management



in

- ✓ For continual support for EnMS implementation and maintaining
- $\checkmark\,$  For allowing to use their energy data in this presentation
- Project "Catalysing Market Transformation for Industrial Energy Efficiency and Accelerating Investments in Best Practices and Technologies in the Former Yugoslav Republic of Macedonia"
  - ✓ Implemented by UNIDO @ REC Macedonia
  - ✓ Funded by GEF Global Environment Facility



0

WWW.UNIDO.ORG





#### • Thank You for Your attention!



#### Zlatko Gjurchinoski B.Sc Energy Manager Zlatko.gjurchinoski@yahoo.com

https://www.linkedin.com/in/zlatko-gjurchinoski-91092838

